Cobra: Fine-grained Malware Analysis using Stealth Localized-executions

Amit Vasudevan and Ramesh Yerraballi
Department of Computer Science and Engineering
University of Texas at Arlington
Box 19015, 416 Yates St., 300 Nedderman Hall, Arlington, TX - 76019, USA.
{vasudeva, ramesh} @cse.uta.edu

Abstract

Fine-grained code analysis in the context of malware is a
complex and challenging task that provides insight into mal-
ware code-layers (polymorphic/metamorphic), its data en-
cryption/decryption engine, its memory-layout etc., impor-
tant pieces of information that can be used to detect and
counter the malware and its variants. Current research in
fine-grained code analysis can be categorized into static and
dynamic approaches. Static approaches have been tailored
towards malware and allow exhaustive fine-grained mali-
cious code analysis, but lack support for self-modifying code,
have limitations related to code-obfuscations and face the
undecidability problem. Given that most if not all malware
employ self-modifying code and code-obfuscations, poses the
need to analyze them at runtime using dynamic approaches.
However, current dynamic approaches for fine-grained code
analysis are not tailored specifically towards malware and
lack support for multithreading, self-modifying and/or self-
checking code and are easily detected and countered by ever-
evolving anti-analysis tricks employed by malicious code.

To address this problem we propose a powerful dynamic
fine-grained malicious code analysis framework codenamed
Cobra, to combat malware that are becoming increasingly
hard to analyze. Our goal is to provide a stealth, efficient,
portable and easy-to-use framework supporting multithread-
ing, self-modifying/self-checking code and any form of code
obfuscation in both user- and kernel-mode on commodity op-
erating systems. Cobra cannot be detected or countered and
can be dynamically and selectively deployed on malware
specific code-streams while allowing other code-streams to
execute as is. We also illustrate the framework utility by de-
scribing our experience with a tool employing Cobra to an-
alyze a real-world malware.

1. Introduction

Malware — a term used for viruses, trojans, spywares or
any malicious code — is widespread today. Malware anal-
ysis — a complex process employing various coarse- and
fine-grained analysis methods — provides insight into mal-
ware structure and functionality and facilitates the develop-
ment of an antidote. For example, the W32/MyDoom [38]
trojan and its variants propagate via e-mail and download

and launch external programs using the network and registry.
Such behavior, which includes the nature of information ex-
changed over the network, the registry keys used, the pro-
cesses and files created etc., is inferred by employing coarse-
grained analysis pertaining to process, network, registry, file
and other related services of the host operating system (OS).
Once such behavior is known, fine-grained analysis is em-
ployed on the identified areas to reveal details such as the
polymorphic and/or metamorphic code layers of the trojan,
its data encryption and decryption engine, its memory lay-
out etc.

Fine-grained malware analysis is a challenging task that
provides important pieces of information that are key to
building a blueprint of the malware core structure and func-
tioning that aids in the detecting and countering the malware
and its variants. As an example, the W32/MyDoom trojan
with variants commonly known as W32/MyDoom.X-MM
(where X can be A, B, R, S, G etc.) share the same meta-
morphic code layers, encryption/decryption engine and sim-
ilar anti-analysis schemes. The Netsky [15], Beagle [24] and
Sobig [35] worms are some other examples of how malware
are coded in an iterative fashion to add more features while
retaining their core structure. Thus, once the core structure of
a malware is documented, it becomes easy to tackle the rest
of its variants as well as other malware which share a similar
structure. Also, with malware writers employing more com-
plex and hard to analyze techniques, there is need to perform
fine-grained analysis of malicious code to counter them ef-
fectively.

Current research in malware analysis can be broadly cat-
egorized into static and dynamic approaches. Static ap-
proaches allow exhaustive fine-grained analysis because
they are not bound to a specific execution instance. They al-
low detection of malicious code without actually run-
ning the program, ensuring that the malices discovered will
never be executed and incur no run-time overhead. In spite
of such powerful properties, static analysis has some limita-
tions. With static analysis there is the problem that the an-
alyzed code need not be the one that is actually run; some
changes could be made between analysis and execution. This
is particularly true with polymorphism [56, 47] and meta-
morphism [48] that are techniques employed by most
if not all current generation malware. Also it is impossi-
ble to statically analyze certain situations due to undecid-

ability (eg. indirect branches). Further, static code analysis
also have limitations related to code obfuscation — a tech-
nique used by malware to prevent their analysis and detec-
tion. Dynamic approaches overcome these limitations by
analyzing the code during run-time ensuring that the the ana-
lyzed code is the one that is actually run, without any further
alterations. Though there have been several research on dy-
namic coarse-grained malware analysis [23, 42, 46, 21, 51],
not much has been published about dynamic fine-grained
malware analysis. Currently fine-grained dynamic mal-
ware analysis can be achieved by employing debuggers
and/or fine-grained instrumentation frameworks .When us-
ing a debugger such as Softice [20], WinDBG [43] etc.,
the basic approach is to set breakpoints on identified ar-
eas and then trace the desired code-stream one instruc-
tion at a time to glean further information. Alternatively one
could also employ a fine-grained instrumentation frame-
work such as Pin [34], DynamoRIO [8] etc., for automated
tracing of code-streams for a given range of code. How-
ever, these tools are not equipped to handle malicious
code and have severe shortcomings in the context of mal-
ware.

Current debugging and fine-grained instrumentation tech-
niques can be easily detected and countered by the executing
malware code stream. As an example, the W32/HIV [37],
W32/MyDoom [38], W32/Ratos [49], and their variants em-
ploy techniques such as code execution timing, where the
malware time their executing code therby easily detecting
that they are being analyzed (since debugging and/or auto-
mated code tracing incur latency that is absent during normal
execution). Further they contain ad-hoc detection schemes
against popular debuggers such as Softice, WinDBG, etc.
Current debugging and fine-grained instrumentation tech-
niques do not carry support for self-modifying and/or self-
checking (SM-SC) code . Most if not all malware are sen-
sitive to code modification with subtle anti-analysis tech-
niques and code obfuscations that defeat breakpoints in de-
bugging and the process of automated code tracing using
fine-grained instrumentation frameworks. As an example, the
W32/MyDoom and the W32/Ratos employ integrity check-
ing of their code-streams with program-counter relative code
modification schemes which render software breakpoints
and current fine-grained instrumentation frameworks useless.
Malware that execute in kernel-mode are even tougher to an-
alyze using current dynamic fine-grained techniques, since
they have no barriers in terms of what they can access. For
example, the W32/Ratos employs multithreaded polymor-
phic/metamorphic code engine, running in kernel-mode and
overwrites the interrupt descriptor table (IDT) with values
pointing to its own handlers. Current fine-grained instrumen-
tation frameworks do not carry support for kernel-mode code
and do not support multithreading. Current debugging tech-
niques provide kernel-mode code support but do not support
multithreading in kernel-mode. Furthermore, recent trend in
malware has been to employ debugging mechanisms sup-
ported by the underlying processor within their own code,

thereby effectively preventing analysis of their code using
current debugging techniques. Examples include W32/Ratos,
which employs the single-step handler (used for code trac-
ing) to handle its decryption in kernel-mode and W32/HIV
which uses debug registers (used for hardware breakpoints)
for its internal computation. This situation calls for a dy-
namic fine-grained code-analysis framework specifically tai-
lored towards malware.

This paper presents the concept of stealth localized-
executions and presents Cobra, a realization of this concept
that enables dynamic fine-grained malware analysis in com-
modity OSs in a completely stealth fashion. Our goals are to
provide a stealth, efficient, portable and easy-to-use frame-
work that supports multithreading, SM-SC code and code
obfuscations in both user- and kernel-mode while allow-
ing selective isolation of malware code-streams. By stealth
we mean that Cobra does not make any visible changes to
the executing code and hence cannot be detected or coun-
tered. The framework employs subtle techniques such as
slice-colascing and slice-skipping to provide a efficient su-
pervised execution environment. Cobra currently runs un-
der the Windows (9x, NT, 2K and XP) and Linux OSs with
minimal dependency on the host OS and employs an archi-
tecture specific disassembler for its inner functioning. This
makes the framework portable to other platforms (OS and ar-
chitecture) with ease. Cobras API is simple yet powerful
making the framework easy-fo-use. Analysis tools are usu-
ally coded in C/C++ using the framework API. The API
is architecture independent while allowing the tools to ac-
cess architecture specific details when necessary. The
framework allows what we call selective-isolation that al-
lows fine-grained analysis to be deployed on malware spe-
cific code-streams while allowing normal code-streams to
execute as is. The framework also allows a user to tie spe-
cific actions to events that are generated during the analysis
process in real-time. To the best of our knowledge, Co-
bra is the first fine-grained malware analysis framework that
provides a highly conducive environment to combat mal-
ware which are ever-evolving and increasingly becoming
hardened to analysis.

This paper is organized as follows: We begin by consider-
ing related work on malware analysis and compare them with
Cobra in Section 2. We then present an overview of Cobra in
Section 3. We follow this with a detailed discussion on de-
sign and implementation issues in Section 4. In Section 5, we
discuss our experience with one of our tools employing Co-
bra to analyze a real- world malware and present some per-
formance numbers for the framework in Section 6. Finally,
we conclude the paper in Section 7 summarizing our contri-
butions with suggestions for future work.

2. Background and Related Work

A malware is a program that can affect, or let other pro-
grams affect, the confidentiality, integrity, the data and con-
trol flow, and the functionality of a system without explicit
knowledge and consent of the user [4]. A classification of

malware according to its propagation method and goal can be
found in [39, 7]. Given the fact that malware is widespread
today and knowing the devastating effects that malware can
have in the computing world, detecting and countering mal-
ware is an important goal. To successfully detect and counter
malware, one must be able to analyze them in both coarse-
and fine-grained fashion — a complex process that is termed
Malware analysis. In this section we will discuss some of the
existing research in the area of malware analysis and com-
pare them with Cobra. A complete annotated bibliography
of papers on malware analysis and dectection can be found
in Singh and Lakhotia [45]. Current research in malware
code analysis and detection can be broadly categorized into
static and dynamic approaches [4]. Both methods have their
advantages and disadvantages and are complimentary. Static
approaches to malware analysis can be used first, and infor-
mation that cannot be gleaned statically can then be dynami-
cally acscertained.

Static approaches to malware analysis extend techniques
related to verifying security properties of software at a source
level [1, 6,9, 10, 26, 32] to binary (since for a malware,
in most if not all cases, there is no source-code availabil-
ity). Bergerson et. al [5, 3] present techniques that disassem-
ble the binary and pass it through a series of transformations
that aid in getting a high-level imperative representation of
the code. The binary is then sliced to extract the code frag-
ments critical from the standpoint of security and malicious
code. Giffin et al [22] disassemble a binary to remotely de-
tect manipulated system calls in a malware. Many malware
detection techniques are based on static analysis of executa-
bles. Kruegel et al [28] employ static binary analysis to de-
tect kernel-level rootkits. SAFE [12] and Semantic-Aware
Algorithm [14] are other examples of malware detection al-
gorithms employing similar static analysis techniques. Static
approaches allow exhaustive fine-grained analysis because
they are not bound to a specific execution instance. They en-
able detection of malicious code without actually running the
program. Therefore, the malices discovered will never be ex-
ecuted. On the performance side, there is no run-time over-
head associated with a static analysis. After just one anal-
ysis, the program can run freely. In spite of these benefi-
cial properties, there are some limitations. The main problem
with static code analysis is that the analyzed code need not
be the one that is actually run; some changes could be made
between analysis and execution. This is particularly true in
self-modifying techniques such as polymorphism [56, 47]
and metamorphism [48] that are ubiquitous in most malware
code streams. Static approaches also have limitations related
to code obfuscation [18, 19, 55]. They employ a dissassem-
bler as an essential step in their analysis procedure. Linn and
Debray [31] and Christodorescu and Jha [13] demonstrate
that simple obfuscations can thwart the dissassembly pro-
cess. While Kruegel et al [27] present techniques for dis-
assembling obfuscated executables, they are unable to han-
dle situations such as indirect obfuscation [41, 53], instruc-
tion overlap [17] etc.

Dynamic approaches analyze malware code during run-
time. Though dynamic approaches incur a run-time overhead
and are non-exhaustive, they overcome the main limitation
of static approaches in ensuring that the the analyzed code
is the one that is actually run, without any further alterations
thereby supporting self-modifying code and code obfusca-
tions. Dynamic approaches can further be categorized into
coarse-grained and fine-grained approaches. Coarse-grained
dynamic approaches are very useful in capturing the behavior
of a malware at a high level.Janus [23] provides a secure en-
vironment to execute untrusted applications. It intercepts and
filters dangerous system calls under Solaris to reduce the risk
of a security breach by restricting the program’s access to the
operating system. DaMon [21] is a dynamic monitoring sys-
tem uses a similar technique to dynamically enforces a secu-
rity policy to stop certain malicious actions on resources such
as ports, registry, processes etc. SPIKE [51] is a stealth soft-
ware framework that works on the principle of dynamic mon-
itoring, to log activity of malware code streams. Most net-
work intrusion detection systems [42] and honeypots [46]
also hinge on dynamic coarse-grained analysis for their func-
tioning.

In contrast, fine-grained dynamic approaches help to un-
derstand the inner structure of the malware in terms of its
run-time code envelopes, its data encryption/decryption en-
gine, memory layout, anti-analysis techniques etc. Though
there have been several research on dynamic coarse-grained
malware analysis, not much has been published about dy-
namic fine-grained malware analysis. Cohen [16] and Chess-
White [11] propose a virus detection model that executes
in a sandbox. However, their model is not generic and does
not allow fine grained analysis at a level that can be used
to document the internal workings of a malware. Debuggers
such as Softice [20], WinDBG [43], GDB [33] etc. en-
able dynamic fine-grained analysis in both user- and kernel-
mode. Though current debuggers to some extent, support
self-modifying and code obfuscations, they are not tailored
specifically towards malware analysis and fall prey to several
anti-debugging tricks employed by them [50]. While code
analysis using a debugger is manual (one has to trace instruc-
tions manually), tools such as Pin [34], Valgrind [8], Dy-
namoRIO [40], Strata [44], Diota [36] etc. enable automated
code tracing by employing a virtual machine approach. How-
ever, these tools are designed for normal program instrumen-
tation and hence do not carry support for SM-SC code and
code obfuscations. Further these tools do not carry adequate
support for multithreading and cannot handle code in kernel-
mode. Hypervisors such as VMWare [52], QEmu [2] etc. are
able to handle multithreading in both user- and kernel-mode
code efficiently, but do not carry support for SM-SC code.
Also, they are not tailored towards malware and can be de-
tected and countered [48].

In comparison Cobra is a dynamic fine-grained malware
analysis framework that overcomes the shortcomings of cur-
rent research in dynamic fine-grained malware analysis by
providing a stealth supervised code execution environment

Code
Stream

Cobra
API

Disassembler
(Processor Abstraction)

\

Code
Stream

N

N

-Analysis
Tool

!

S

Block
Monito
(BM)

1

%

c
s}
k=
v
e
=
19
o
<

5
/
Block Creation &

eXecute Engine
(BCXE)

£
[}
2
a
B
2
o
=
=]
o
o
o
O

Code
Stream

User-Mode

r
Block
Repository

0oL
/ siskjeuy

1
1
1
|
7
1
1
1
7/

Code
Stream

Kernel-Mode

Figure 1. High Level Architecture of Cobra

that can handle multihreading, self-modifying and any form
of code obfuscation in both user- and kernel-mode. Cobra
cannot be detected or countered in any fashion and supports
both manual and automated code tracing, providing insight
into executing malware code streams at runtime. The frame-
work supports selective isolation whereby one can deploy
fine-grained analysis of malware specific code-streams while
co-existing with normal code-streams in real-time.

3. Framework Overview

Fine grained malware analysis using Cobra is facilitated
by a technique that we call stealth localized-executions. The
basic idea involves decomposing (slicing) a target code-
stream into several instruction blocks (slices) which are then
executed, one block at a time, in a fashion so as to mimic
the normal execution of the target code-stream. Each slice
is implanted with various invisible Cobra specific code con-
structs (as applicable), ensuring that the framework has com-
plete control over the executing code-stream while remain-
ing stealth.

Figure 1 illustrates the current architecture of Cobra. The
framework core consists of a code slice and execute engine
(CSXE), a disassembler, a slice repository, a slice-monitor,
and a framework API. The CSXE is responsible for decom-
posing a target code-stream into individual slices. The tar-
get code stream can be a regular or a malware specific code-
stream. An architecture specific disassembler is employed to
construct slices corresponding to the target code-stream, in
a dynamic fashion. The slice repository functions as a local
cache for storage of slices. Only code from the slice repos-
itory is executed and never any code from the target code
stream. The CSXE begins slicing the target code stream at
an overlay point and stops slicing at a release point, a user-
defined range where fine-grained analysis is desired. This al-
lows Cobra to be deployed and removed in a dynamic fashion
on a given code-stream while allowing other code streams
to execute as is, a technique we call selective isolation. As
an example, the W32 /Ratos trojan and its variants employ sev-
eral kernel-mode threads for their functioning. An overlay point in
this case could be KiSwitchContext (a Windows internal ker-
nel function responsible for thread pre-emption) and a release point
could be the return from this function. The slice-monitor employs
subtle techniques involving virtual memory to protect critical mem-
ory regions during slice execution and is responsible for maintain-
ing coherence between the target code-stream and its slices in case
of self-modifying code.

As Figure 1 shows, there are typically three binary elements
present during an analysis session: the target code-streams (resid-
ing in either user- and/or kernel-mode), the analysis tool employ-
ing Cobra (typically some sort of debugger), and Cobra itself. The
analysis tool, for each overlay point in a target code-stream, invokes
the framework for fine-grained analysis over a specified range of the
code-stream (Steps 1 and 2, Figure 1). The analysis tool uses SPiKE
[51] (a stealth coarse grained malware analysis framework) and/or
VAMPIRE [50] (a stealth breakpoint framework) to gain control at
specified overlay points in both user- and/or kernel-mode. The anal-
ysis tool then performs the required actions (processing) for speci-
fied events during the execution of the slices. An event can be: slice
creation, execution of instructions within a slice, a system or library
function invocation within a slice, acesss to critical memory regions
within a slice etc. (Step 3, Figure 1). Cobra finally stops slicing the
target code-stream at the specified release point and transfers con-
trol back to the analysis tool which then resumes normal execution
of the target code-stream (Steps 4 and 5, Figure 1).

Cobra resides in kernel-mode and can capture multithreaded,
SM-SC and any form of code obfuscations in both user- and kernel-
mode code with ease. The framework is completely re-entrant, as
it does not make use of any OS specific routines during the ex-
ecution of slices and uses shared memory with its own isolation
primitives for interprocess communication. The framework em-
ploys techniques such as slice-skipping (where standard and/or
non-standard code-streams are excluded from slicing) and slice-
coalescing (where multiple slices are composed together) for effi-
ciency. The Cobra API is simple yet powerful to allow a tool writer
to harness the complete power of the framework.

4. Design and Implementation

Our goal in designing and implementing Cobra was twofold.
First, it should be able to provide a stealth supervised environment
for fine-grained analysis of executing malware code-streams, sup-
porting multithreading, self-modifying code and any form of code
obfuscation in both user- and kernel-mode on commodity OSs. Sec-
ond, one must be able to deploy the framework dynamically and
selectively on malware specific code-streams while allowing other
code-streams to execute as is. This section describes how Cobra
achieves these capabilities.

4.1. Localized-Executions

Cobra decomposes a target code-stream into several groups of
instructions and executes them in a fashion so as to mimic the code-
stream’s normal execution. This process is what we call localized-
executions and the instruction groups are called blocks. A block is
nothing but a straight-line sequence of instructions that terminates

8d003felh:
8d003fe3h:
8d003feb5h:
8d003fe8h:
8d003ff0h:
8d003fflh:
8d003ff4dh:
8d003ff6h:
8d003£f8h:
8d003ffch:
8d003ffeh:
8d004001h:
8d004003h:
14. 8d004006h:
15. 8d004008h:
. 8d00400eh:
17. 8d004015h:

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.

mov eax, [edi+3ah]
xor eax, [edi+2bh]
mov [edi+2ch], eax
call 8d003ffOh

pop ebp

mov ebx, [edi+lah]
mov [ebpteax], ebx
mov esi, ebp
call d[edi+0bh]
jne 8d003£flh
add eax, ebp
call eax

cmp [edi+lah],

jne 8d004002h I_’bloc’(’5
mov eax, 1B02EBO2h |—»block-6
mov eax, E105EE3ch >»block-7
call 8d00505fh

}—}block—l

block-2

> block-3
|—>block74

7ch

(a)

block-5:
block-1: . cmp [edi+lah], 7ch
mov. eax, [ed}+3ah] mov PIB, entry5
xor eax, [edi+2bh] block-3: jne boxe
mov. [edit2ch], eax mov PIB, entry2 mov PIB, entryé
mov PIB, entry0 jne bexe jmp bexe
jmp bexe mov PIB, entry3
jmp bcxe block-6:
block-2: xor eax, [edi+2bh]
pop ebp block-4: mov PIB, entry7
mov ebx, [edi+lah] add eax, ebp jmp bcxe
mov [ebp+eax], ebx mov PIB, entry4
mov esi, ebp jmp bcxe block-7:
mov PIB, entryl mov PIB, entry8
jmp bcxe jmp bcxe
(b)

Figure 2. Block Creation: (a) Target Code-stream, and (b) Corresponding Blocks

in either of these conditions: (1) an unconditional control transfer
instruction (CTI), (2) a conditional CTI, or (3) a specified number of
non-CTIs. A block-repository contains a subset of the recently con-
structed blocks and acts as a framework local cache. Only blocks re-
siding in the block-repository are executed — never the instructions
in the target code-stream (hence the term localized-executions). Co-
bra’s Block Creation and eXecution Engine (BCXE) is responsible
for creating blocks from the target code-stream and executing them.

4.1.1. Block Creation The BCXE employs an architecture spe-
cific disassembler on the target code-stream, to discover instructions
one at a time, and create the corresponding blocks. Figure 2a shows
part of a code-stream of the W32/Ratos trojan and a typical block
creation process. The code-fragment has been modified to remove
details not pertinent to our discussion and the instructions are shown
in the 32-bit assembly language syntax of the IA-32 (and compati-
ble) processors [25].

Every block ends with a framework specific set of instructions
— which we call a Xfer-stub — that transfers control to the BCXE.
Xfer-stubs ensure that Cobra is always under control of the target
code-stream being analyzed. When a block is executed, the BCXE
gets control at the end of the block execution via the block xfer-stub,
determines the target memory-address to create the next block from,
dynamically generates a new block for the corresponding code-
stream if it has not done before, and resumes execution at the newly
generated block. Thus, execution of blocks follows a path which is
the same as the normal execution of the target code-stream in ab-
sence of the framework. Figure 2(b) shows the blocks created by
the BCXE for the code-stream shown in Figure 2(a).

The BCXE differs from VMs employed in current hypervi-
sors [52, 2] and fine-grained instrumentation frameworks [34, 8,
40, 44, 36] in that: (a) it employs special treatment for CTIs thereby
supporting SM-SC code and any form of code obfuscation (see Sec-
tion 4.1.3), (b) it employs special treatment on privileged instruc-
tions and instructions that betray the real state of a code-stream
and hence cannot be detected or countered in any fashion (see Sec-
tion 4.2), (c) it achieves efficiency without recompiling the instruc-
tions of the target code-stream (see Section 4.3), and (d) it is com-
pletely re-entrant supporting multithreading under both user- and
kernel-mode and allows tuning the level of fine-grained analysis de-
sired.

4.1.2. Xfer-stubs Xfer-stubs, code constructs specific to Cobra,
that terminates every block can be abstracted as a function that takes
a single parameter (Figure 3(a)). The parameter is an index into a
Xfer-Table, an internal data structure of the framework, which en-
ables the BCXE to obtain run-time information on the supervised

code-stream, which includes among other things, the address of the
target code-stream to generate a new block from. A xfer-stub re-
places the CTI (conditional or the unconditional) that terminates
a block. In some cases, where block creation terminates because
a predefined number of non-CTIs were reached, Cobra treats the
block as ending with an unconditional branch/jump instruction and
creates a corresponding xfer-stub. Figure 3(b) shows the xfer-stub
implementations for conditional and unconditional CTIs on the [A-
32 (and compatible) processors. For unconditional CTIs the corre-
sponding xfer-stub simply performins an unconditional jump (JMP)
into the BCXE. For conditional CTIs, the xfer-stub translates a con-
ditional into a conditional and an explicit JMP. This ensures that the
BCXE gets control for both situations where the conditional evalu-
ates to a true and false. The parameter to a xfer-stub is passed via a
Parameter Information Block (PIB) — a per-thread, framework in-
ternal memory area instead of the thread stack. This is required to
prevent Cobra from being detected or countered by the malware be-
ing analyzed (see Section 4.2.2).

The xfer-table (shown in Figure 3(c)) is an array of structures,
one element for each xfer-stub that is currently used by the frame-
work. Every entry in the xfer-table consists of (1) a target-address
type (TAT), (2) a target-address value (TAV), (3) the xfer-stub type
(XST), and (4) additional xfer-stub parameters (if applicable). The
TAT determines if the address at which the CXSE will create a new
block from, is an immediate value (VALIMM) or an indirect ex-
pression (VALIND) whose value has to be evaluated by the BCXE
at run-time upon entry from the xfer-stub. The TAV is a constant
(when TAT is VALIMM) or an expression (when TAT is VALIND).
The XST indicates whether the xfer-stub is for a standard CTI with
no additional processing (XNORMAL) or a CTI that needs special
processing (XSPECIAL). XST XNORMAL is used in the major-
ity of cases while XST XSPECIAL is used to handle cases where:
(1) the CTI uses the thread stack implicitly (CALL, INT etc.) (see
Section 4.1.3), and (2) the framework needs to employ block spe-
cific xfer-stubs to remain stealth (see Section 4.2.1). In both cases
the framework makes use of additional xfer-stub specific parame-
ters.

Figure 3(c) shows the entries corresponding to the xfer-stubs for
the blocks shown in Figure 2(b). As seen, entryQ has TAT set to
VALIMM and TAV set to the constant 8d003ffOh since the corre-
sponding xfer-stub is for a CALL instruction (Line 4, Figure 2(a))
which deals with a constant target address at which the CXSE gen-
erates the next block from. However, entry4 has TAT set to VALIND
and TAV set to the expression EAX since the corresponding xfer-
stub is for a CALL instruction (Line 12, Figure 2(a)) whose target

Entry Number Target Address Target Address Xfer-Stub Xfer-Stub

bcxe (entry number) ; Type (TAT) Value (TAV) Type Parameters

@) entry0 VALIMM 8d003ffoh XSPECIAL 8d003ffoh

entry1 VALIND [edi+0bh] XSPECIAL 8d003ffch
entry2 VALIMM 8d003ff1h XNORMAL NULL
entry3 VALIMM 8d003ffeh XNORMAL NULL

% mo%y truepart entry4 VALIND eax XSPECIAL 8d004003h
op boxe 7 Sxx boxe - entrys VALIMM 8d00400ah XNORMAL NULL
mov PIB, entry falsepart entry6 VALIMM 8d004008h XNORMAL NULL
jmp bexe entry7 VALIMM 8d004010h XNORMAL NULL
jxx = je, jme, jc, jmc, b etc. entry8 VALIND ledi+eax*4] XNORMAL NULL

(b) (c)

Figure 3. (a) Xfer-Stub Abstraction, (b) Xfer-Stub Implementation on 1A-32 (and compatible) proces-

sors, and (c) Xfer-Table

address depends on the runtime value of EAX at that point in exe-
cution. For both cases, the XST is set to XSPECIAL to indicate that
the xfer-stubs require additional processing.

4.1.3. Obfuscated Code and SM-SC Code Cobra’s model
of employing xfer-stubs for every CTI (unconditional or condi-
tional) enable the framework to support any form of code ob-
fuscations, since obfuscated code rely on conditional and/or un-
conditional branches in between instructions for their functioning
[31, 18, 19, 55]. Since every block generated by the BCXE termi-
nates on exactly one CTI and the fact that the BCXE can handle both
direct and indirect control transfers, it is guaranteed that the desti-
nation memory-address for the next block creation always points
to an address from which a valid block can be constructed using
the disassembler. Lines 14-16, Figure 2(a) and blocks 5-7, Fig-
ure 2(b), show an example of obfuscation in a code-stream and the
corresponding blocks generated. Note how the blocks successfully
un-obfuscate the code stream as it would happen during normal ex-
ecution in the absence of the framework. A point to be noted is that
if a block tried to include more than one CTI, the resulting block
generated might escape the framework supervision during execu-
tion due to a CTI with indirect target address (e.g CTI in line 12,
Figure 2(a)). However, the framework can be configured dynami-
cally to construct blocks including multiple CTIs or coalesce exist-
ing blocks for performance enhancements (see Section 4.3) in cases
where one can be certain that such blocks will not escape the frame-
work supervision.

Cobra handles CTIs that employ the stack implicitly in a spe-
cial fashion. As an example, on the IA-32 (and compatible) proces-
sors, the CALL instruction transfers control to a procedure uncon-
ditionally. The instruction pushes the return address on the stack
as a part of its semantic which is then popped by a correspond-
ing RET instruction to resume execution at the caller. This prop-
erty is exploited by most if not all SM-SC code which, instead of
using the RET instruction, pop the value into a register and use it
to access their code in a position independent manner for modifi-
cation and/or integrity checking. Cobra ensures that the program-
counter of the target code stream is always reflected in the corre-
sponding xfer-stub for such instructions thereby supporting SM-SC
code. block 1, Figure 2(b) shows the cobra xfer-stub corresponding
to the CALL instruction shown in line 4, Figure 2(a). As seen the
corresponding xfer-table entry, entryO (Figure 3(c)), sets the XST to
XSPECIAL and stores the original program-counter as the param-
eter. The BCXE thus pushes the original program-counter on the
stack before proceeding with block creation at the destination ad-

dress.

4.1.4. Block Execution Localized-executions start from a
user-defined point — which we call an overlay point — in a tar-
get code-stream. An overlay point is the memory-address (typ-
ically a OS and/or a library function address) in a target
code-stream from where fine-grained analysis is desired. An over-
lay point under Cobra is defined by employing SPiKE [51]
(a stealth coarse-grained malware analysis framework) and/or
VAMPIiRE [50] (a stealth breakpoint framework). Once ex-
ecution reaches an overlay point, Cobra is invoked to start
fine-grained analysis until a release point is reached. A re-
lease point is the memory-address in a target code-stream where
Cobra relinquishes supervision and lets the code-stream exe-
cute in a normal fashion. A overlay point and its corresponding
release point thus establish a fine-grained analysis range on a tar-
get code-stream under Cobra, while allowing other code-streams to
execute as is — a technique we call selective isolation. Under Co-
bra, one can specify multiple overlapping and/or non-overlapping
overlay and release points for a target code-stream. The frame-
work also supports nesting of overlay and release points and allows
release points to be infinite, in which case the complete thread con-
taining the target code-stream is constantly run under Cobra’s
supervision, until the thread terminates or the framework is in-
voked to stop localized-executions.

As an example, the W32/Ratos trojan runs under the Windows
OS and employs several kernel-mode threads for its inner function-
ing. One such kernel-mode thread replaces the default single-step
handler in the Interrupt Descriptor Table (IDT) with a trojan spe-
cific handler. With Cobra, we employ KiSwitchContext (an internal
Windows kernel function responsible for thread pre-emption) as the
first overlay point to execute each of the trojan kernel-mode threads
under the supervision of Cobra with infinite release points. Upon
detection of an access to the single-step vector in the IDT via a Co-
bra generated event (see Section 4.1.5), we employ the destina-
tion address of the single-step handler as our second overlay point
(with the corresponding release point being the return from excep-
tion), thereby allowing us to study the W32/Ratos single-step han-
dler in further detail. All this is done while co-existing with other
OS user- and kernel-mode threads and exception handlers.

Cobra’s BCXE executes individual blocks in an unprivileged
mode regardless of the execution privilege of the target code-stream.
This ensures that Cobra has complete control over the executing in-
structions. The framework can also monitor any access to specified
memory regions, the OS kernel and resources, dynamic libraries etc.

Cobra employs the virtual memory system combined with subtle
techniques for memory access monitoring. On the IA-32 (and com-
patible) processors, for example, Cobra elevates the privilege level
of specified memory regions and critical memory structures such as
page-directories/page-tables, the IDT, the descriptor tables (GDT
and LDT), task state segments (TSS) etc. by changing their mem-
ory page attributes and installs its own page-fault handler (PFH) to
tackle issues involving memory accesses. The PFH also facilitates
hiding framework specific details in the page-table/page-directories
and the IDT while at the same time allowing a code-stream to in-
stall their own handlers and descriptors in these tables. Cobra em-
ploys stealth-implants (see Section 4.3.1) to support supervised ex-
ecution of privileged instructions in the event that the target code-
stream runs in kernel-mode.

Cobra does not make use of any OS specific functions within its
BCXE. The disassembler employed by the framework is completely
re-entrant. The framework employs a per-thread PIB for the block
xfer-stubs, does not tamper with the executing stack and employs
subtle techniques to remain stealth (see section 4.3.1). These fea-
tures enable the framework to support multithreading since the ex-
ecuting threads see no difference with or without CORBA in terms
of their registers, stack contents or time block. Cobra also supports
automatic thread monitoring for a specified process or the OS ker-
nel. This is a feature that automatically blocks every code-stream
associated with a target process. Thus an entire process can be exe-
cuted under Cobra by specifying the process creation API as an in-
tial overlay point and allowing the framework to automatically in-
sert overlay points thereafter on every new thread or process asso-
ciated with the parent.

4.1.5. Events and Callbacks Cobra generates various events
during block execution. These include block creations, stealth im-
plants, begin/end execution of a whole block, execution of indi-
vidual and/or specific instructions within a block, system calls and
standard function invocations, access to user defined memory re-
gions, access to critical structures such as page-directories/page-
tables, IDT, GDT etc. An analysis tool employing Cobra can em-
ploy event specific processing by registering callbacks — functions
to which control is transferred by the framework to process a de-
sired event during block execution. Callbacks are passed all the in-
formation they need to change the target code-stream registers and
memory (including the stack), examine the block causing the event
and instructions within it. A callback can also establish a new over-
lay point during an analysis session. Events and Callbacks thus fa-
cilitate tuning the level of fine grained analysis from as fine as in-
struction level to progressively less finer levels.

A typical analysis process in our experience would employ
events on block creations, begin/end of block executions, access to
critical memory regions and any stealth implants before doing an
instruction level analysis of blocks. As an example, if one consid-
ers the W32/Ratos, it overwrites the IDT single-step handler entry
with a value pointing to its own single-step handler within a poly-
morphic code envelope. A IDT-write event can be used to obtain
the trojan single-step handler address in the first place. The call-
back for the IDT-write event would use the single-step handler ad-
dress as an overlay point to further analyze the trojan single-step
handler in a fine-grained fashion. The events of block creation, be-
gin/end block executions can then be used to build an execution
model of the polymorphic code envelope. The inner working of the
single-step handler can then be studied by an instruction level anal-
ysis on identified blocks.

4.2. Stealth Techniques

Block execution occurs at an unprivileged level which can cause
problems with privileged instructions in the event that the target
code-stream runs in kernel-mode. Also, certain situations can re-
sult in the betrayal of the real state of an executing code stream.
Blocks can contain instructions which read the machine state but do
not cause an exception and thus escape the BCXE. As an example
the RDTSC instruction can be used to obtain the relative execution
time of a region of code which will be more in the case of a block
being executed than normal execution. Certain instructions silently
change the behavior of the executing code. An example would be a
POPF instruction which sets the trap flag resulting in single step ex-
ceptions for every instruction executed thereafter. A malware code
stream could also employ detection schemes against the framework
by accessing structures such as the stack, page-tables, descriptor ta-
bles (IDT, GDT and LDT) etc. Cobra employs a host of techniques
to tackle issues involving privileged instructions and the framework
stealthness.

4.2.1. Stealth-Implants Cobra scans a block for privileged in-
structions and instructions that betray the real state of the executing
code-stream and replaces them with what we call stealth-implants.
These are Cobra code constructs that aid in supervised execution
of privileged instructions and the framework stealthness, while pre-
serving the semantics of the original instructions in the target code-
stream. Stealth-Implants only take place on blocks and never on the
original code. Thus they are undetectable by any intergrity check as
such checks always operate on the original code-stream. Cobra in-
serts stealth-implants for various instructions and employs a host of
antidotes for various possible ways in which a malware could detect
the framework. However, due to space constraints we will concen-
trate on the discussion of a few important instructions on the IA-32
(and compatible) processors and techniques that can be used to de-
tect the framework and their antidotes.

1A-32 (and compatible)
Processor Instruction
rdtsc mov eax,cobra_tcounter *

Stealth Implant

push cobra_ segreg

push segreg
pop cobra_segreg *

pop segreg

mov destination, segreg mov destination,cobra_segreg

mov segreg,source mov cobra_segreg,source *

sidt destination mov destination,cobra_idtclone

sgdt destination mov destination,cobra_gdtclone

sldt destination mov destination,cobra_ldtclone

str destination mov eax,cobra_tssselector

mov drx/crx,source mov cobra_drx/cobra_crx,source *
mov destination,drx/crx mov destination,cobra_drx/cobra_drx
in al/ax/eax,port mov al/ax/eax,cobra_valuefrom port *
out port,al/ax/eax mov cobra_valueto_port,al/ax/eax *
pushf push cobra eflag

popf pop cobra_eflag *

* Implant Executed via an Xfer-Stub

Figure 4. Stealth Implants

Localized-executions results in increased latency due to block
creations and the xfer-stubs transferring control to and fro the
BCXE during block execution. Such latency is not present during
the normal execution of the target code-stream. A malware could
use this fact to detect if its being analysed. As an example, a mal-
ware could use the RDTSC instruction to obtain the amount of
clock-cycles that have elapsed since system-bootup and obtain a rel-
ative measurement of its code fragment execution. A malware could
also use the real-time clock (RTC) to perform a similar latency de-
tection in kernel-mode via the IN and the OUT I/O instructions. Fig-

. 8d003ff0h: pop ebp

Block Creation ety

@ block-1-2-3:
N ’b\é) 9. pop ebp

1 block-2: \

2. 8d003fflh: mov ebx, [edi+lah] jblock-1: mov PIB, entry?2 block-3: e 10. mov ebx, [edi+lah]

3. 8d003ff4h: mov [ebp+eax], ebx : pop ebp jne bcxe . 1 add eax, ebp \ 11. mov [ebpteax], ebx

4. 8d003ff6h: mov esi, ebp | mov ebx, [edi+lah]l oy pIB, entry3 | > I 1 mov PIB, entry4| | 12. mov esi, ebp i
5. 8d003ff8h: call d [edi+Obh] | mov [ebpteax], ebX jmp bexe jmp bexe ! 13. call d [edi+0bh) (SKip)
6. 8d003ffch: jne 8d003££lh | mov i;;r ebi . : 14. jne 1

7. 8d003ffeh: add eax, eb | mov ; entry . . i 15. add eax, ebp

8. 8d004001h: call eax P R jmp bcxe call d [edi+0bh] (Skip) call eax (Skip) | 16. mov PIB, entryd

jmp bcxe (Skip)

Figure 5. Skipping and Block-Coalescing

ure 4.2.1 shows the stealth-implants corresponding to such instruc-
tions. The RDTSC instruction stores the return value in the EAX
register. The RTC detection makes use of the RTC I/O ports us-
ing the privileged IN instruction. Cobra replaces such privileged in-
structions with xfer-stubs that transfer control to the BCXE which
then locally executes these instructions at a high privilege level and
returns the result. For example, Cobra replaces the RDTSC instruc-
tion with a regular MOV instruction that stores the value of Cobra’s
internal processor-counter to the EAX register (Figure 4). A point
to note is that not all stealth-implants transfer control to the BCXE.
Most instructions which store a value into a destination memory
operand can have a stealth-implant without an xfer-stub directly re-
placing the instruction.

Certain malware code streams can employ using debugging
techniques for their own execution. A malware for example can em-
ploy the POPF instruction to set the processor trap-flag. This re-
sults in a single-step exception being invoked. The malware can
then use the single-step handler to perform the actual functional-
ity (eg. W32/Ratos). A stealth implant in this case will replace the
POPF instruction with a xfer-stub that tranfers control to the BCXE.
The BCXE will then examine the trap-flag and will automatically
generate a single-step exception for every instruction thereafter un-
til the trap-flag is clear. Some code-streams running in kernel-mode
can also employ the hardware debugging registers themselves for
computation. (eg. W32/HIV and W32/Ratos). The debugging reg-
isters can also be used by the malware to set breakpoints within
its code-streams. Cobra handles such issues by replacing access to
such debug registers with stealth-implants and can generate break-
point exceptions by monitoring such registers.

Malware code streams can also use instructions such as PUSH,
VERW and ARPL in both user- and kernel-mode to obtain the se-
lector for the executing code segment. Since Cobra executes the
blocks at an unprivileged level such instructions will reflect an un-
privileged code selector and can be used as a detection mechanism
against the framework. However, Cobra’s stealth-implants in this
case replace such instructions to reflect the actual value of the exe-
cuting code segment selectors.

4.2.2. Cloning and Other Issues A malware can access criti-
cal system structures in order to detect that its being analyzed using
Cobra. For example a malware might try to obtain the PFH address
and compare it with the system default values (which for certain
OSes lies within a fixed range regardless of their version) in order
to detect the framework. Similarly it might try to check the page-
attributes of certain memory regions (eg. its code and data) which
can have their attributes elevated due to memory access monitor-
ing by Cobra. Further a malware can also install its own fault han-
dlers in the IDT for its functioning. Cobra uses a technique that
we call cloning to hide the framework while at the same time al-
lowing the malware to access such critical structures. The frame-

work maintains a copy of critical memory regions such as the page-
tables/page-directories, IDT, GDT etc. that reflect their system de-
fault contents initially. The framework PFH tackles issues such as
reads and/or writes to such critical structures by presenting the clone
of these memory regions, thereby fooling the malware into think-
ing that it is operating on the original memory regions. Stealth-
Implants for certain instructions involving control registers such as
CR3 (used to obtain the page-directory base address) and instruc-
tions such as SIDT, SLDT and SGDT present the addresses of the
cloned memory regions instead of the original.

Localized-executions leads to a couple of issues a malware could
exploit to detect the framework during run-time. A malware in a
multithreaded fashion can use a thread context capture function (un-
der Windows OSs the GetThreadcontext API and under Linux, the
ptrace API) to obtain the current program-counter and stack con-
tents for it executing threads. However, since the thread code-stream
is being executed by Cobra, the values of the program-counter and
the stack will be different than in the normal course of execution.
Cobra instruments such APIs using a stealth coarse-grained instru-
mentation framework, SPiKE [51] and presents the original value
of program-counter and the original thread stack. A point to be
noted is that Cobra has no effect on the thread stack of the target
code-stream. The framework employs a local stack (different from
the currently executing thread stack), that is switched to upon en-
try from an xfer-stub. Also, the xfer-stubs make use of the PIB to
pass parameters to the BCXE, thereby ensuring that the thread stack
is left untouched. This prevents Cobra from being detected using
stack overflow mechanisms.

Every instance of Cobra’s deployment is different in the form of
any privileged modules, environment variables, configuration files
and code streams. Thus, no malware can detect the framework by
searching these elements for a pattern. This also allows load/store
instructions within blocks that access memory regions pertaining to
the framework code/data, to be executed directly without Cobra’s
intervention.

4.3. Skipping and Block-Coalescing

A block may contain an instruction that transfers control to a
code-stream following a standard execution semantic (e.g system
calls, standard library calls etc.). Localized-executions of such stan-
dard code-streams result in increased latency and are in most cases
undesirable (since they do not form a part of the malware being an-
alyzed). For example, consider the code fragment of the W32/Ratos
trojan as shown in Figure 5. The CALL instruction in line 8, Fig-
ure 5 uses an indirect target address, but is found to transfer con-
trol to a standard code-stream (in this case the VirtualProtect system
call). Localized-execution of the system call in this case is meaning-
less since it does not contribute towards the analysis process. Note
that the system call invocation does have a bearing on the malware

functionality at a coarse level, but does not have any implication
on the fine grained analysis of the malware code stream. Cobra can
identify such standard code-streams dynamically and exclude them
from the slicing process thereby reducing the latency that might oc-
cur in trying to execute an OS or standard piece of code. We call
this technique block-skipping. block-skipping can also be applied to
non-standard code-streams during the analysis process. This might
be used to exclude already analyzed code-streams from the slicing
process thereby improving the performance. As an example, line 5
of Figure 5 shows a CALL instruction which performs an integrity
check over a specified region of code. The code stream concealed
behind this CALL never changes in its semantics and can be thus
be skipped after analyzing it once.

Execution of blocks under Cobra involve control transfers to and
fro the CXSE. These trasnsfers result in the saving and restora-
tion of the processor registers which contribute to the framework
latency. This is more important inr code-streams employing loops
since every iteration of the loop will involve invoking the CXSE.
The framework employs a technique that we call block-coalescing
to minimize latency due to such code constructs. In this technique,
a group of blocks are brought together to form a single block pre-
venting multiple control transfers to the BCXE. Let us consider the
code-fragment shown in Figure 5. Here we see a localized loop
implementing some form of integrity check. The figure shows the
blocks associated with the code fragment. From our analysis ses-
sion, we found the loop to execute close to 50 times. Figure 5
shows the block-coalesced version where blocks 1-3 have been co-
laesed thus reducing the number of transfers to the BCXE. block-
Coalescing is a powerful mechanism that produce blocks that are
very similar to the original code-stream and can be locally executed
with minimal latency while ensuring that Cobra is still under con-
trol of the executing code-stream. block-Coalescing is performed
by a user-defined callback that chooses the blocks to participate in
the coalescing process. With the above example, the first few in-
stance of the loop executes normally producing blocks 1-3, Figure
5. Once the instructions in the blocks are analyzed the blocks can
be coalesced together so that future iterations execute with mini-
mal latency. Note from line 16, Figure 5 that the BCXE gets control
once again after the loop has been executed without any interven-
tion.

Cobra supports block-coalescing for self-modifying code by em-
ploying a subtle technique involving virtual memory. The idea is
to set the memory page attributes of the executing code-streams
to read-only. Thus, when a write occurs to such code regions due
to self-modification, Cobra’s PFH gets control and the blocks cor-
responding to such code regions are purged and re-created subse-
quently — a process we call block-purging.

4.4. Framework API

Anaylsis tools that employ Cobra are usually written in C/C++
using the framework API. The API is easy-to-use and is designed
to be platform independent whenever possible allowing tool code to
be re-usable while allowing them to acess platform specific details
when necessary. In Figure 6, we list a partial code of a plugin for
WiILDCAT, our prototype malware analysis environment employ-
ing Cobra. The plugin is specific to the analysis of the W32/Ratos
trojan and its variants and aids in gleaning information about the
malware internals.

The main interface to Cobra is provided in the form of four APIs:
cobra_init, cobra_action, cobra_start and cobra_comm. As seen from
Figure 6, an analysis tool using Cobra, first initializes the frame-

--- w32ratos _plugin.c ---
#include <cobra.h>
#include <spike.h>

// main function for a plugin under WiLDCAT
void plugin_main() {

spike_init(); //initialize SPiKE
cobra_init(); //initialize Cobra
//establish overlay point

addrl= spike_addr ("ntoskrnl.exe", "KiSwitchContext");
spike_insertprobe (addrl, overlaypoint);

void actionhandler (ACTIONINFO *a) {

//process desired event
switch (a->eventtype) {
case EVENT_IDTWRITE: //write to IDT

//new overlay point on single-step handler
spike_insertprobe (a->eventparam[0], overlaysshandler);

T

void overlaypoint (DRIFTERINFO *d) {
ACTIONCHAIN ac.

//select events to be processed
cobra_action(ac, AC_BLOCKCREATE, actionhandler);
cobra_action(ac, AC_IDTREAD | AC_IDTWRITE, actionhandler);

//start localized-execution at overlay point

spike cleanupstack(&d) ;

cobra_start (d->origfunc, &release, ac);
release:

spike longjmp (&d); //resume normal execution

}

Figure 6. W32/Ratos Plugin for WIiLDCAT, a
tool employing Cobra

work from within its main routine using the cobra_init API. The
analysis tool also initializes support frameworks used by Cobra such
as VAMPIRE [50] and/or SPiKE [51] at this stage and establishes
the first overlay point using their API (in our example in Figure 6,
SPiKE is used to setup an overlay point on KiSwitchContext, a Win-
dows internal kernel function). When the overlay point gets control,
the tool uses the cobra_action API to setup callbacks for various
events to be handled once slicing begins. This is shown in Figure 6
where events for IDT access (AC_IDTREAD and AC_IDTWRITE)
and block creation (AC_blockCREATE) are selected. With Cobra,
a single callback can handle multiple events. Finally, the analysis
tool invokes the cobra_start API to establish the range in which fine
grained analysis is desired. The starting address of slicing depends
upon the overlay point and in our example happens to be the pa-
rameter to the KiSwitchContext function which is the thread ad-
dress to switch context to. This is retrieved from the DRIFTER-
INFO structure for the instrument under SPiKE [51]. The release
point in the example is the code label release and is the point where
the thread returns. A point to be noted is that most kernel-mode
threads never return, but the establishing such a release point en-
sures that the framework stops slicing in case the thread returns.
During block execution, Cobra invokes the callback (actionhan-
dler in Figure 6) when the desired events occur. This is in the form
of a single parameter of type ACTIONINFO to the callback. Among
other fields, the ACTIONINFO structure contains the event-type,
the event parameters and a pointer to a buffer containing the in-
structions for the current block. The callback can then take further
steps to process the desired event. In our example, the IDT write
event (AC_IDTWRITE) is used to obtain the single-step handler ad-
dress and to setup another overlay point on the single-step handler.
The Cobra API cobra_comm is used to communicate between a call-

back and other modules of the analysis tools, in situations where the
analysis tool is constructed to be different processes. In our exam-
ple, WiLDCAT runs the plugin in the address space of the target
process/thread while the tool itself runs as a separate process.

5. Experience

This section will discuss our experience with Cobra in analyz-
ing a real-world malware, W32/Ratos [49], thereby illustrating the
framework utility. We chose the W32/Ratos trojan for our analy-
sis and discussion since it operates in both user- and kernel-mode
containing complex code envelopes and a variety of anti-analysis
tricks that one would typically encounter in recent malware. Before
we proceed to discuss our experience with the W32/Ratos trojan, a
few words regarding the analysis environment are in order. To val-
idate Cobra, we use our prototype malware analysis environment
codenamed WiLDCAT. The current version of WiLDCAT runs un-
der the Windows OSs (9%, 2K and XP) on the IA-32 (and compat-
ible) processors. It makes use of Cobra (apart from other frame-
works such as SPiKE [51] and VAMPIRE [50]) for real-time mal-
ware analysis in both coarse- and fine-grained fashions. For analy-
sis purposes, an Intel Xeon 1.7 GHz 32-bit processor with 512 MB
of memory running the Windows XP OS and WiLDCAT was used.

The W32/Ratos with variants known as W32/Ratos.A, Back-
door.Ratos.A, Backdoor.Nemog etc. is a trojan that runs under the
Windows OSs and is usually deployed as a second stage mal-
ware after being downloaded as a payload of other worms such
as W32/MyDoom [38] and its variants. The W32/Ratos and its
variants (hereon referred to as W32/Ratos collectively) includes a
kernel-mode component that executes as a service and a user-mode
process. Once in place, the trojan will allow external users to re-
lay mail through random ports, and to use the victim’s machine as
an HTTP proxy. The trojan also has the ability to uninstall or up-
date itself, and to download files by connecting to various prede-
fined list of IP addresses and ports on various public file sharing
networks.

The internal structure of the W32/Ratos is as shown in Fig-
ure 7. The malware consists of a user-mode process (named
DX32HHLPEXE) and a kernel-mode component (named
DX32HHEC.SYS) running as a service. DX32HHLP.EXE is re-
sponsible for a bulk of the malware functionality with the
kernel-mode component aiding encryption/decryption and ini-
tial deployment. The W32/Ratos and its variants cannot be ana-
lyzed using current static approaches. The trojan employs a com-
plex multithreaded metamorphic code envelope for both its user-
and kernel-mode components. The W32/Ratos employs a multi-
level encryption/decryption scheme employing algorithims which
resemble the TEA [54] and IDEA [29] ciphers. It employs a win-
dowed mechanism where the code is decrypted in a preallocated
region of memory thus allowing only a small portion of it to be de-
crypted in memory at a given time.

The metamorphic code envelopes access code and data using rel-
ative pointers for self-modifications and integrity checks (see Sec-
tion 5.1). Both the user- and the kernel-mode components employ
several anti-analysis tricks to prevent themselves from being an-
alyzed. Such checks include among other things, code execution
time profiling and privilege level detections. These techniques are
not handled by current dynamic fine-grained code-analysis frame-
works and the malware upon such detections will remain dormant
or put the system into an unstable state. The trojan code envelop is
multithreaded in both user- and kernel-mode and in certain cases
achieve decryption via a single-step exception (see Section 5.2)

1 = Level-1 Decryption (IDEA cipher)

Metamorphic Code Fragments
employing Level-2 decryption

2 = Level-2 Decryption (Variant of TEA cipher)

. Metamorphic Code Fragments using the
single-step handler for Level-2 decryption

DX32HHLP.EXE Address Space

[AN v
25y 2 2_
Launch Code | Static Encrypted | > 1 ZZ_' o
and Data Code and Data 1 (] I 1

1
(Polymorphic) | (IDEA cipher) 29 | 2 | ! !

Dynamically Allocated Memory Regions
L using VirtualAlloc |

User-Mode

Kernel-Mode

f Dynamically Allocated Memory Regions 1

DX32HHEC.SYS using ExAllocatePool
[l 2 S i
Launch Code | Static Encrypted | 29¢ | 2 | P]
2 2
andData | Code and Data ¥] _: e 2<#r :
(Polymorphic)| (IDEA cipher) L L 1
2 | [.
I ! |

Single-Step
Handler
T 1 1 1

Figure 7. W32/Ratos Internal Structure

and also employ debugging registers for their internal computation,
thereby defeating current debuggers. The kernel-mode component
of the trojan achieves a stealth profile by hooking several Windows
OS kernel functions such as ZwQueryDirInformation and ZwQw-
erySystemInformation.

The following paragraphs discuss in further detail, our experi-
ence in analyzing the W32/Ratos employing Cobra. The discussion
serves as the basis on which we were able to document the inner
structure (shown in Figure 7) and operation of the malware, thus il-
lustrating the utility of the framework. For purposes of discussion,
we will proceed to look at some simplified code fragments of the
W32/Ratos under different analysis sessions with WiLDCAT, our
prototype malware analysis environment. The code fragments are
shown in the 32-bit assembly language syntax of the IA-32 (and
compatible) processors.

5.1. Metamorphism and Memory Layout

Our first step in analyzing the W32/Ratos started with a coarse-
grained analysis of the malware, thereby documenting its behaviour
at a high level. We used SPiKE [51], a stealth coarse-grained mal-
ware analysis framework, to obtain the different system calls that
were issued by the malware. It is found that the W32/Ratos is-
sues several calls to ExAllocatePool, VirtualAlloc, VirtualProtect
and MMProbeandLockPages, functions which allocate a range of
memory outside of the existing code and/or data and change the
attributes of the allocated memory range. The malware also cre-
ates several threads in both kernel- and user-mode as exempified
by calls to PsCreateSystemThread and CreateThread APIs. We pro-
ceed to do a deeper investigation by using KiSwitchContext as our
first overlay point and invoking Cobra for fine grained analysis of
the threads created by the malware. KiSwitchContext is an internal
windows kernel function that is used for thread pre-emption. We
also instruct Cobra to generate events on memory accesses (reads,
writes and/or executes) to any memory region allocated with the Ex-
AllocatePool and VirtualAlloc APIs.

Consider the code fragment shown in Figure 8a. This (and sev-
eral other) code fragments show the trojan metamorphic envelop in
action. The code fragment shown here was obtained on events gen-
erated as a result of a write to the memory regions allocated by the
malware using the ExAllocatePool and VirtualAlloc APIs and is a

Metamorphic Code Fragment:

01. 2d003feOh: mov eax, [edi+3ah] 2
02. 2d003fe3h: xor eax, [edi+2bh]
03. 2d003fe5h: mov [edi+2ch], eax

04.

Obfuscated code:

01. 2d003feOh:
02. 2d003fe5h:
03. 2d003feah:
2d003fefh:

mov eax, 1BO02EBO02h
mov esi, E105EE3ch
xor eax, 12344456h
mov eax, [ebx+tesi]

Unobfuscated code:

0l. mov esi, [edi+7dh]

2. 11 i+10h] --> k fi
04. 2d003fe8h: call 2d003££0h --> PC (b) 83 ca - d [edi+10h] stack fix
05. 2d003f£f0h: pop ebp addressing - push esi
06. 2d003fflh: mov ebx, [edi+lah] 04. push edi
07. 2d003ff4h: mov [ebpteax], ebx Code decrypt: 05. mov ebx, [esp+8+4]
08. 2d003fféh: mov esi, ebp 06. push ebx
09. 2d003ff8h: add eax, ebp T 7.1 {+04
10. 2d003ffbh: call eax --> data decrypt 1 01. push ebx 88' eahedZ' ledi+04]
11. 2d003ffeh: xor [edi+lah], 7ch 02. bts w [esp], 3 - push edx
12. 2d004001h: call d [edi+Obh] 03. popf 09. push 4096
13. 2d004004h: jne 2d00400Ah 04. mov edx, 4e773421h 10. lea eax, [edi+7c]

14. 2d004006h: add ax, [bx+si] |ePcrypted

15. 2d004006h: mov eax, 051 data for 05. sub edx, 33112255h 11. mov eax, [eax+4].
16. 2d004009h: xor eax, eax code 06. mov eax, 77421223h 12. call eax --> winsock.dll!read
decrypt 07. push ebx 13. jne 2d004fla

ret

(a)

(c) (d)

Figure 8. (a)-(d) W32/Ratos Metamorphic Code Fragment

coalesced version of the blocks that were executed by Cobra dur-
ing the analysis process.

The W32/Ratos employs a multilevel decryption mechanism and
metamorphic code engine to execute its internal code. The first level
of decryption results in code fragments that are generated on the fly
and executed in the memory regions allocated via the VirtualAl-
loc/ExAllocatePool APIs. Though the actual instructions of the de-
crypted code can vary from session to session of analysis due to the
metamorphic nature, they have a regular pattern as shown in an ex-
ample code fragment in Figure 8a. Here we see a fragment of a tro-
jan subroutine that is responsible for its update feature.

Every code fragment generated by the metamorphic engine have
two parts: a self-modifying second level decryption and an en-
crypted data that is responsible for the actual functioning of the
fragment. The self-modifying section uses a program counter rel-
ative addressing (lines 4-5, Figure 8a) and modifies the code frag-
ment by employing a second level decryption. Some of the meta-
morphic code fragments employ a second level decryption via a
single-step handler in the kernel-mode component of the trojan (see
Section 5.2). The second level of decryption changes the actual in-
structions at the start of the code fragment and creates an obfuscated
code section by employing the encrypted data of the metamorphic
code fragment. It is also responsible for setting up the data for the
new instructions that are decrypted. (lines 10 and 12, Figure 8a).
The memory regions allocated via the VirtualAlloc/ExAllocatePool
APIs thus act as a runtime window for code and data decryption
on the fly. This technique ensures that not all of the malware code
and/or data are in the decrypted form at a given time thereby mak-
ing the analysis process harder. With Cobra however, it is relatively
easy to document such techniques by using events corresponding to
memory region accesses. Figure 7 shows the memory layout of the
trojan as a result.

The code generated by the second layer of decryption overwrites
the start of the metamorphic code fragment and looks like a se-
quence regular instructions but are in fact obfuscated (Figure 8b).
The actual instructions that are executed depend on the constants to
the various instructions. Cobra’s block execution events quickly re-
veal the actual code behind the obfuscated instructions as shown
in Figure 8d. Upon further investigations it is found that the obfus-
cated instructions of the code fragment is actually a part of the tro-

jan update feature that results in downlaods from certain public file
sharing networks.

A metamorphic code fragment in certain cases also include an
integrity check on the code fragment to see if there has been tamper-
ing. In such cases, the trojan simply ensures that the second level de-
cryption is voided, which results in the obfuscated fragment not be-
ing decrypted leading to spurious faults during the analysis process.
Manual patching of such detections is a tedious process since the
malware employs several such integrity checks throught its func-
tioning. With Cobra however this is not of any consequence since
the framework ensures that the original code is left untouched in
memory.

5.2. Decryption and Anti-Analysis Tricks

The W32/Ratos employs a multilevel decryption scheme. The
first level of decryption results in the generation of metamorphic
code envelopes as discussed in the previous section. The metamor-
phic code fragments themselves employ a second level of decryp-
tion for their code and data. In certain cases the second level of de-
cryption is performed using a sublte technique involving the single-
step handler.

Consider line 12 of the code fragment shown in Figure 8a. This
is responsible for the decryption of the code for the particular meta-
morphic code fragment. Now consider the code fragment shown in
Figure 8c which is obtained when the call is executed by Cobra. As
seen from lines 1-3, Figure 8c, the trojan uses the PUSHF instuc-
tion and sets the trap-flag thereby invoking the single-step handler
from that point on in execution. The single-step handler is present in
the kernel-mode component, concealed within a polymorphic code
envelope, and is responsible for the actual second level decryption.

We proceed to analyze the single-step handler using Cobra, by
setting an overlay point on the IDT entry for the single-step ex-
ception upon encountering block execution events containing the
instructions shown in Figure 8c. We also setup Cobra for generat-
ing memory read and write events on the instructions shown in lines
4-7, Figure 8c and the encrypted data section (line 13 onwards, Fig-
ure 8a) of the metamorphic code fragment, since we suspected that
that single-step handler might overwrite those with new instructions
on the fly.

Figure 9 shows a part of the single-step handler that was recon-

structed from the blocks by handling memory read and write events
on the metamorphic code fragment in Figure 8a and the range of in-
sructions shown in lines 4-7 of Figure 8c.

01. mov ebp, [edi+04h]
02. mov eax, [ebp]

03. mov [edi+18h], eax —>
04. mov eax, [ebp+4]
05. mov [edi+1Ch], eax

instructions following
single-step exception
form the decryption key

06. mov eax, [ebp-24h]
07. mov ebx, eax

08. shr ebx, 5

09. shl eax, 4

10. xor eax, ebx Variation of the TEA
11. add eax, [ebp-24h] —>» employed for second
12. mov edx, [edi+lCh] layer decryptinon
13. and edx, 03h

14. mov ebx, [edi+18h]
15. add ebx, edx

16. mov edx, [ebx]]
17. add edx, [edi+lCh]

Figure 9. W32/Ratos Single-Step Handler

As seen from lines 1-5, Figure 9 (documented via a memory
read event on the instructions shown in lines 4-7, Figure 8c), the
single-step handler makes use of a 64-bit value following the single-
step exception from the instruction sequence shown in Figure 8c. A
memory write event on the encrypted data section of the metamor-
phic code fragment in Figure 8a, later reveals code fragments of the
single-step handler (lines 6—17, Figure 9) which resembles a variant
of the TEA encryption algorithm using a 64-bit key which is bor-
rowed from the two instructions following the single-step exception
(lines 5-6, Figure 8c). Thus, the encryption key is stored within the
metamorphic code fragment itself, albeit camouflaged in instruc-
tions, which is used to decrypt the obfuscated section for that par-
ticular metamorphic code fragment. Similar investigations reveals
the IDEA encryption algorithm being employed as a first layer of
encryption used to generate a metamorphic code fragment.

The W32/Ratos trojan employs a couple of other techniques
apart from its metamorphic code envelopes, to prevent its analy-
sis. These techniques are scattered in various areas of its internal
code both in user- and kernel-mode. Consider the code fragment
shown in Figure 10a. The W32/Ratos employs a technique which
we call code execution timing. The trojan makes use of the RDTSC
instruction to obtain the value of the processor time stamp counter
at various intervals within a block of instructions comprising its
code (lines 6 and 12, Figure 10a). If the difference in the execu-
tion time of the instructions for a block is greater than a particular
pre-calibrated threshold for that block of instructions (lines 13-17,
Figure 10a), the W32/Ratos sets certain specific flags which cause
the decryption engine to cease working in a normal fashion (line
18, Figure 10a). Thus, when the trojan is executed in a virtual or su-
pervised environment (resulting in an increase in the execution time
beyond the the normal range) the metamorphic code generated by
the trojan is erroneous and thus results in spurious faults.

Another technique employed by the W32/Ratos is what we call
privilege-level checks. The trojan obtains the privilege level of its
currently executing code, data and/or stack segment during execu-
tion of instructions in kernel-mode. This is done using varions in-
structions that access segment selectors (PUSH, MOV etc.). Fig-
ure 10b shows a fragment of code employing the PUSH instruction
to obtain the code segment privilege level within its decryption en-
gine. The W32/Ratos employs a very intelligent mechanism in that
it uses the privilege level indicator in the segment selectors as a
part of its internal computations (lines 3-9, Figure 10b). Thus, if

0l. mov esi, [edx]

02. lea esi, [esi+22h]
03. mov esi, [esi+40h]
04. mov edx, [esi+44h]
05. xor ebx, ebx

11. pop [edi+dch]

06. rdtsc 12. rdtsc
07. push eax ‘ 13. sub [edi+4ch], eax
08. call d [edi+32h] 14. lea ebx, [edi+4dh]
09. jne 2150D010h 15. mov ebx, [ebx+24h]
10. call d [edi+44h] 16. sub [edi+4ch], ebx
‘e 17. jec 19
jne 03 18. call d [edi+2dh]

call d [edi+12c] 19. mov eax, [esil]

(a)

01. mov eax, [ebp-20h]02.
02. mov ebx, eax

03. push cs

04. pop ecx

05. and ecx, OFh

06. add ecx, 5

07. shr ebx, ecx

08. dec ecx

09. shl eax, ecx

10. xor eax, ebx

(b)

Figure 10. W32/Ratos Anti-Analysis Tricks: (a)
Code Execution Timing and (b) Privilege Level
Detection

the code is run under a different privilege level to capture the be-
havior of the trojan in kernel-mode for example (this might be the
case when running under a VM such as VMWare [52], Bochs [30]
etc.), the decryption algorithm in this particular case would be er-
roneous as the values for the instructions would be completely dif-
ferent. However, Cobra handles such anti-analysis techniques with
ease. The framework employs stealth-implants on blocks contain-
ing such instructions thereby fooling the malware into thinking its
being executed without any form of supervision.

As seen, features provided by current fine-grained code-analysis
frameworks do not suffice in the analysis of the W32/Ratos and
other similar malware. However, with Cobra this task is greatly sim-
plified. The framework cannot be detected or countered and allows
fine-grained analysis to be dynamically and selectively deployed
on desired code-streams. With Cobra it is relatively easy to glean
malware details such as the malware code envelopes, its encryp-
tion/decryption engine, memory layout etc. — important pieces of
information that facilitate the development of an antidote to com-
bat the malware and it variants.

6. Performance Measurements

The performance of a fine-grained malware analysis framework
such as Cobra depends on a number of factors, chief among them
being: (a) the nature of the code being analyzed such as self-
modifying, obfuscated, self-checking etc. and, (b) the style of anal-
ysis employed by an individual such as selecting the code streams
to be analyzed, the analysis ranges, the blocks to be coalesced, the
code blocks to be skipped etc. These factors are not easy to charac-
terize and hence it is difficult to come up with a representative anal-
ysis session for performance measurements. This is further compli-
cated by the fact that the same individual can adopt a different style
of analysis at different times for a given code stream. Therefore,
we will concentrate on presenting the performance of Cobra based
on analysis sessions with a Windows based trojan, W32/Ratos (see

[Latencydueto

AR = Analysis Range

Block Creations

AR-1 (112%,2.47s)
AR-2]
AR-3 (165%, 1.595) (403%, 4.04s)
AR-4 (35%,0.675)

o 50 100 150 200 250

Latency in Clock Cycles (x 107)
(@) Normal

AR-1 (79%,1.63s)
AR-2 (287%,3.01s)
AR-3 (112%,0.99s)
AR-4 (36% ,0.775)

o 50 100 150 200 250

Latency in Clock Cycles (x 107)

(c) With Block-Coalascing and Skipping
on standard code streams

Latency due to
Xfer-Stubs

[l Latency dueto Latency due to

Stealth Implants Block Purging
AR-1 (105%,2.33s)
AR-2 []
AR-3 (111%,1.15) (332%,3.39)
AR-4 (38%,0.755)
o 50 100 150 200 250
Latency in Clock Cycles (x 107)
(b) With Block-Coalascing
AR-1 (58%1.395)
AR-2
AR-3 (85%,0.93s)
AR-4 (21%,0.44s)
o 50 100 150 200 250
Latency in Clock C}/cles (x107)
(209%, 2.14s)

(d) With Block-Coalascing and Skipping
on standard and non-standard code streams

Figure 11. (a)-(d) Performance of Cobra on Analysis Sessions with the W32/Ratos

Section 5). The performance of the framework for other analysis
sessions can be estimated in a similar fashion.

Before we proceed to present the performance measurements of
Cobra, a few words regarding the test-bench are in order. To val-
idate Cobra, we make use of our prototype malware analysis en-
vironment, WiLDCAT. The current version of WiLDCAT employs
Cobra for its functioning and runs under the Windows OS (9x and
XP) on the [A-32 (and compatible) processors. For test purposes,
an Intel 1.7 GHz processor with 512 MB of memory was used.

We divide the total run-time latency of Cobra into: (a) latency
due to block creations, (b) latency due to xfer-stubs, (c) latency due
to block purging, and (d) latency due to stealth implants. Readings
were taken at various points within WiLDCAT and Cobra to mea-
sure these overheads. We use processor clock cycles as the perfor-
mance metric for the runtime latency. This metric is chosen, as it
does not vary across processor speeds and also since it is a stan-
dard in literature related to micro benchmarks. The processor per-
formance counter registers were used to measure the clock cycles
by using the RDMSR instruction.

Figure 11 shows the performance of Cobra under different anal-
ysis methods for various analysis ranges. The analysis ranges were
chosen from our analysis sessions involving the encryption and de-
cryption engine of the W32/Ratos. The choice of the analysis ranges
(single-step handler, parts of first and second decryption layers)
were such that their semantics are relatively constant and they occur
for every instance of the trojan deployment. This allows us to ob-
tain a deterministic performance measure of various aspects of the
framework. For the graphs in Figure 11, the y-axis (category axis)
represents the analysis ranges the x-axis is the amount of extra clock
cycles that are incurred as opposed to the native run-time of that par-
ticular range. Also, the data label next to each of the stacked bar in
all the graphs represent the percentage of normalized latency and its
corresponding time in seconds for a 1.7GHz Intel processor.

Figure 11a shows the performance of Cobra when run normally
(without applying performance enhancement techniques such as
block-coalescing and/or skipping). As seen from the graph of Fig-
ure 11a, latency due to block-creations and xfer-stubs are present in
every analysis range (analysis ranges 1-4 in this case) and form a

major portion of Cobra’s overall latency since these elements form
the backbone of the framework. Latency due to block-purging only
comes into effect when an analysis range involves self-modifying
code (analysis ranges 1-3 in this case) and is due to the fact that
the framework invalidates the blocks corresponding to the modi-
fied code regions. Latency due to stealth-implants occur when Co-
bra needs to patch a block in order to prevent its detection. This is
shown in analysis ranges 1, 2 and 4 which contain W32/Ratos anti-
analysis code fragments. In general Cobra incurs lower overall la-
tency when the ratio of straight line instructions to branches and
loops is greater over a localized code region as exemplified by anal-
ysis range 4. In other cases the overall latency of the framework de-
pends upon the number and nature of the branches encountered in
the code stream. As an example, analysis range 2 incurs a latency as
high as 5 times the normal execution time due to a high amount of
code obfuscation via jumps. This is due to the increased block cre-
ations and xfer-stub overheads for such blocks, to ensure that the
obfuscation is tackled completely during block execution (see Sec-
tion 4.1.2).

Figure 11b shows the latency of Cobra employing block-
coalescing on the same analysis ranges. Block-coalescing helps in
reducing the latency due to xfer-stubs when analyzing code involv-
ing loops over instruction blocks. As seen from the graph in Fig-
ure 11b, analysis ranges 2 and 3 which contain a large number of
loops incurs a much lower overall latency with block-coalescing
when compared to its overall latency without block-colascing (Fig-
ure 11a). However, for analysis range 1 there is negligible gain in
performance with block-coalescing, since the number of code loops
is very less in its case. A point to note is that the latency of anal-
ysis range 4 with block-coalescing is more than its latency with-
out block-coalescing in Figure 11a. This is due to the fact that the
W32/Ratos generates varying amount of code for a given function-
ality and embeds a random amount of anti-analysis code fragments
in different instances of its deployment due to its metamorphic na-
ture.

block-skipping helps to further reduce the overall latency by ex-
cluding standard and/or already analyzed code streams from the
analysis process. Figure 11c shows the performance of Cobra with

block-coalescing and block-skipping applied to standard kernel
code streams. As seen from the graph of Figure 11c, the latency of
analysis ranges 1 and 2 are reduced further when compared to their
latency without block-skipping in Figure 11b. This is because, the
code streams in analysis ranges 1 and 2 invoke standard kernel func-
tions such as VirtualProtect, KeSetEvent, KeRaiselrql etc. which
are excluded from the slicing process with block-skipping. How-
ever, analysis range 4 has negligible improvement since it does not
involve any calls to standard code-streams. Figure 11d shows the
performance of Cobra with block-coalescing and block-skipping
on standard as well as already analyzed malware code streams. As
an example the single-step handler always invokes the code block
handling a variant of the TEA decryption algorithm several times
within its code stream. This code block never changes in its se-
mantics and can be thus be skipped after analyzing it once. As seen
from the graph of Figure 11d, analysis ranges 1-4 have a reduced la-
tency from their counterparts in Figure 11c. Note that analysis range
4, which showed a negligible change with block-skipping of stan-
dard code streams, shows a noticable latency reduction with block-
skipping applied to already analyzed code blocks.

Thus we can conclude that the performance of the framework is
highly dependent on the nature of code being analyzed and the style
of analysis employed by an individual (in terms of selecting anal-
ysis ranges, colascing blocks, choosing code blocks to skip etc.).
However, the measurements give a gross indication of the latency
one might expect. As seen from Figure 11, even the worst case la-
tency (without block-coalescing and block-skipping) of the frame-
work is found to be within the limits to suit interactive analysis.

7. Conclusions

We have presented Cobra, a stealth, efficient, portable and easy-
to-use dynamic fine-grained malicious code analysis framework
that overcomes the shortcomings in current research involving fine-
grained code-analysis in the context of malware. Cobra facilitates
the construction of powerful fine-grained malware analysis tools
which are required to combat malware that are increasingly becom-
ing hardened to analysis. Cobra does not make any visible changes
to the executing code and hence cannot be detected or countered.
The framework can capture multithreaded , SM-SC and any form
of code obfuscations in both user- and kernel-mode while incur-
ring a performance latency that is suitable for interactive analysis.
The framework supports selective isolation — a technique that en-
ables fine-grained analysis of malware specific code-streams while
co-existing with normal code-streams in real-time. Cobra currently
runs on the Windows (9x, NT, 2K and XP) and Linux OSs on the
IA-32 (and compatible) processors. Cobra’s architecture has min-
mal OS dependency and abstracts platform specific details thus en-
abling the framework to be ported to other platforms. We show Co-
bra’s easy-to-use APIs enable construction of powerful fine-grained
malware analysis tools with ease and discuss one of our own tools
that we have used for fine-grained analysis of various malware. In
our belief, Cobra is the first of its kind in tailoring a fine-grained
code-analysis strategy specifically targetted at analyzing malware
code-streams. Future works include improving the performance of
the framework and integrating Cobra into a full fledged malware
analysis environment currently being developed by us.

References

[1] K. Ashcraft and D. Engler. Using programmer-written com-
piler extensions to catch security holes. In Proceedings of the

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

2002 IEEE Symposium on Security and Privacy, pages 143—
159, May 2002.

F. Bellard. Qemu, a fast and portable dynamic translator.
In USENIX 2005 Annual Technical Conference, FREENIX
Track, pages 41-46, 2005.

J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui,
Y. Lavoie, and N. Tawbi. Static detection of malicious code in
executable programs. Symposium on Requirements Engineer-
ing for Information Security (SREIS’01), March 2001.

J. Bergeron, M. Debbabi, J. Desharnais, B. Ktari, M. Salios,
N. Tawbi, R. Charpentier, and M. Patry. Detection of mali-
cious code in cots software: A short survey. First International
Software Assurance Certification Conference (ISACC’99),
March 1999.

J. Bergeron, M. Debbabi, M. Erhioui, and B. Ktari. Static
analysis of binary code to isolate malicious behaviors. In Pro-
ceedings of the IEEE 4th International Workshop on Enter-
prise Security (WETICE’99), June 1999.

M. Bishop and M. Dilger. Checking for race conditions in file
accesses. Computing Systems, 9(2), 1996.

V. Bontchev. Methodology of computer anti-virus research.
Ph.D. Thesis, Faculty of Informatics, University of Hamburg,
1998.

D. Bruening. Efficient, transparent, and comprehensive run-
time code manipulation. Ph.D. Thesis. Massachusetts Insti-
tute of Technology., 2004.

H. Chen and D. Wagner. Mops: an infrastructure for exam-
ining security properties of software. In Proceedings of the
9th ACM Conference on Computer and Communications Se-
curity, pages 235-244, November 2002.

B. Chess. Improving computer security using extending static
checking. In Proceedings of the 2002 IEEE Symposium on Se-
curity and Privacy, pages 160—-173, May 2002.

D. Chess and S. White. An undetectable computer virus. Virus
Bulletin Conference, 2000.

M. Christodorescu and S. Jha. Static analysis of executables to
detect malicious patterns. In Proceedings of the 12th USENIX
Security Symposium (Security03), pages 169-186, Aug 2003.
M. Christodorescu and S. Jha. Testing malware detectors.
In Proceedings of the ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTAO4), pages 34—
44, July 2004.

M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant.
Semantic aware malware detection. In Proceedings of the
2005 IEEE Symposium on Security and Privacy, May 2005.
M. Ciubotariu. Netsky: a conflict starter? Virus Bulletin, pages
4-8, May 2004.

F. Cohen. Computer viruses: Theory and experiments. Com-
puters and Security, 6:22-35, 1987.

F. Cohen. Operating system protection through pro-
gram evolution. February 1998. Available online at
URL http://all.net/books/IP/evolve.html. Last Accessed: 01
November 2005.

C. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation - tools for software protection.
IEEE Transactions on Software Engineering, 28(8):735-746,
August 2002.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of ob-
fuscating transformations. Technical Report 148, Department
of Computer Science, University of Auckland, July 1997.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

Compuware Corporation. Debugging blue screens. Technical
Paper, September 1999.

M. Debbabi, M. Girard, L. Poulin, M. Salois, and N. Tawbi.
Dynamic monitoring of malicious activity in software sys-
tems. Symposium on Requirements Engineering for Informa-
tion Security (SREIS’01), March 2001.

J. Giffin, S. Jha, and B. Miller. Detecting manipulated remote
call streams. In Proceedings of 11th USENIX Security Sym-
posium (Security’02), 2002.

I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure
environment for untrusted helper applications. In Proceedings
of the 6th USENIX Security Symposium, July 1996.

J. Gordon. Lessons from virus developers: The bea-
gle worm history through april 24, 2004. Secu-
rity Focus, May 2004. Available online at URL
http://downloads.securityfocus.com/library/BeagleLessons.pdf.
Last accessed 01 November 2005.

Intel Corp. Ia-32 intel architecture software developers man-
ual. vols 1-3. Intel Developers Guide, 2003.

T. Jensen, D. Metayer, and T. Thorn. Verification of control
flow based security properties. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, May 1999.

C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static dis-
assembly of obfuscated binaries. In Proceedings of the 13th
USENIX Security Symposium (Security’04), August 2004.

C. Kruegel, W. Robertson, and G. Vigna. Detecting kernel-
level rootkits through binary analysis. In Proceedings of the
20th Annual Computer Security Applications Conference (AC-
SACO04), 2004.

X. Lai and J. Massey. A proposal for a new block encryp-
tion standard. In Proceedings of the workshop on the theory
and application of cryptographic techniques on Advances in
cryptology, pages 389—404, 1991.

K. Lawton. Bochs: The open source ia-32 emulation project.
Available Online at URL http://bochs.sourceforge.net, Last
Accessed: 04 November, 2005.

C. Linn and S. Debray. Obfuscation of executable code to im-
prove resistance to static disassembly. In Proceedings of the
10th ACM Conference on Computer and Communications Se-
curity, October 2003.

R. Lo, K. Levitt, and R. Olsson. Mcf: A malicious code filter.
Computers and Society, 14(6):541-566, 1995.

M. Loukides and A. Oram. Getting to know gdb. Linux Jour-
nal, 1996.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwoo. Pin: Building cus-
tomized program analysis tools with dynamic instrumenta-
tion. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 190-200, 2005.
LURHQ. Sobig.e - evolution of the worm. Techni-
cal Report. LURHQ, 2003. Available online at URL
http://www.lurhq.com/sobig-e.html. Last accessed 01 Novem-
ber 2005.

J. Maebe, M. Ronsse, and K. De Bosschere. Diota: Dynamic
instrumentation, optimization and transformation of applica-
tions. Compendium of Workshops and Tutorials held in con-
Jjunction with PACT02’, 2002.

McAfee. W32/hiv. Virus Information Library, October 2000.
Available online at URL http://vil-origin.nai.com/vil/. Last ac-
cessed 28 Oct. 2005.

(38]

(39]

(40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

McAfee. W32/mydoom@mm. Virus Information Library,
2004. Available online at URL http://vil-origin.nai.com/vil/.
Last accessed 28 Oct. 2005.

G. McGraw and G. Morrisett. Attacking malicious code: Re-
port to the infosec research council. IEEE Software, 17(5):33—
41, October 2000.

N. Nethercote and J. Seward. Valgrind: A program supervi-
sion framework. 3rd Workshop on Runtime Verification, 2003.
T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software ob-
fuscation on a theoretical basis and its implementation. /EICE
Transactions on Fundamentals, ES86-A(1), 2003.

V. Paxon. Bro: A system for detecting network intruders in
real-time. In Proceedings of the 7th USENIX Security Sympo-
sium, January 1998.

J. Robbins. Debugging windows based applications using
windbg. Miscrosoft Systems Journal, 1999.

K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson,
and M. Soffa. Reconfigurable and retargetable software dy-
namic translation. In /st Conference on Code Generation and
Optimization, pages 36-47, 2003.

P. Singh and A. Lakhotia. Analysis and detection of computer
viruses and worms: An annotated bibliography. ACM SIG-
PLAN Notices, 37(2):29-35, February 2002.

L. Spitzner. Honeypots: Tracking hackers. Addison-Wesley,
2003. ISBN: 0-321-10895-7.

Symantec. Understanding and managing poly-
morphic viruses. Available online at URL
http://www.symantec.com/avcenter/whitepapers.html. Last

Accessed: 28 October 2005.

P. Szor. The art of computer virus research and defense. Ad-
dison Wesley in collaboration with Symantec Press, 2005.
TrendMicro. Bkdr.surila.g (w32/ratos). Virus Ency-
clopedia, August 2004. Available online at URL
http://www.trendmicro.com/vinfo/virusencyclo/. Last ac-
cessed 28 Oct. 2005.

A. Vasudevan and R. Yerraballi. Stealth breakpoints. 217st
Annual Computer Security and Applications Conference (AC-
SAC’05), December 2005.

A. Vasudevan and R. Yerraballi. Spike: Engineering malware
analysis tools using unobtrusive binary-instrumentation. 29th
Australasian Conference in Computer Science (ACSC’06),
January 2006.

VMWare Inc. Accelerate software development, testing and
deployment with the vmware virtualization platform. Techni-
cal Report, VMWare Technology Network, June 2005.

C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of
software-based survivability mechanisms. In Proceedings of
International Conference of Dependable Systems and Net-
works, 2001.

D. Wheeler and R. Needham. Tea, a tiny encryption algo-
rithm. In Proceedings of the 2nd International Workshop on
Fast Software Encryption, pages 97-110, 1995.

G. Wroblewski. General method of program code obfusca-
tion. In Proceedings of the International Conference on Soft-
ware Engineering Research and Practice (SERP), June 2002.
T. Yetiser. Polymorphic viruses, implementation, detec-
tion and protection. VDS Advanced Research Group, P.O.
Box 9393, Baltimore, MD 21228, USA. Available online
at URL http://vx.netlux.org/lib/aytO1.html. Last accessed 28
Oct. 2005.

